Alu RNP and Alu RNA regulate translation initiation in vitro

نویسندگان

  • Julien Häsler
  • Katharina Strub
چکیده

Alu elements are the most abundant repetitive elements in the human genome; they emerged from the signal recognition particle RNA gene and are composed of two related but distinct monomers (left and right arms). Alu RNAs transcribed from these elements are present at low levels at normal cell growth but various stress conditions increase their abundance. Alu RNAs are known to bind the cognate proteins SRP9/14. We purified synthetic Alu RNP, composed of Alu RNA in complex with SRP9/14, and investigated the effects of Alu RNPs and naked Alu RNA on protein translation. We found that the dimeric Alu RNP and the monomeric left and right Alu RNPs have a general dose-dependent inhibitory effect on protein translation. In the absence of SRP9/14, Alu RNA has a stimulatory effect on all reporter mRNAs. The unstable structure of sRight RNA suggests that the differential activities of Alu RNP and Alu RNA may be explained by conformational changes in the RNA. We demonstrate that Alu RNPs and Alu RNAs do not stably associate with ribosomes during translation and, based on the analysis of polysome profiles and synchronized translation, we show that Alu RNP and Alu RNA regulate translation at the level of initiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alu RNA regulates the cellular pool of active ribosomes by targeted delivery of SRP9/14 to 40S subunits

The human genome contains about 1.5 million Alu elements, which are transcribed into Alu RNAs by RNA polymerase III. Their expression is upregulated following stress and viral infection, and they associate with the SRP9/14 protein dimer in the cytoplasm forming Alu RNPs. Using cell-free translation, we have previously shown that Alu RNPs inhibit polysome formation. Here, we describe the mechani...

متن کامل

Heterodimer SRP9/14 is an integral part of the neural BC200 RNP in primate brain.

BC200 RNA is a brain-specific, small non-messenger RNA with a somatodendritic localization in primate neurons and a constituent of a ribonucleoprotein (RNP) complex. The primary and secondary structure of the 5' domain of BC200 RNA resembles that of the Alu domain of 7SL RNA, which is an integral part of the signal recognition particle (SRP). This would predict that similar proteins bind to thi...

متن کامل

Hierarchical assembly of the Alu domain of the mammalian signal recognition particle.

The mammalian signal recognition particle (SRP) catalytically promotes cotranslational translocation of signal sequence containing proteins across the endoplasmic reticulum membrane. While the S-domain of SRP binds the N-terminal signal sequence on the nascent polypeptide, the Alu domain of SRP temporarily interferes with the ribosomal elongation cycle until the translocation pore in the membra...

متن کامل

Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR.

Cell stress, viral infection, and translational inhibition increase the abundance of human Alu RNA, suggesting that the level of these transcripts is sensitive to the translational state of the cell. To determine whether Alu RNA functions in translational homeostasis, we investigated its role in the regulation of double-stranded RNA-activated kinase PKR. We found that overexpression of Alu RNA ...

متن کامل

Analysis of transcription of the human Alu family ubiquitous repeating element by eukaryotic RNA polymerase III.

A series of clones that contain human Alu family elements are actively transcribed in soluble in vitro RNA polymerase III systems. The 5' ends of the in vitro transcripts are located about 170 nucleotides upstream of the eponymous Alu I site of the repeat, while a region associated with specifying of the initiation site for in vitro transcription lies in the region between 79 and 106 nucleotide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006